ON THE PRIMITIVE GROUPS OF CLASS $3p^*$

RY

W. A. MANNING

In this paper are considered only those groups which contain a substitution of order p and degree 3p, p an odd prime. Two general theorems are first established and then class 9 is disposed of before the general problem is considered.

THEOREM I. Let A be a substitution of degree pq and order p in a group of class pq, $q \leq p$. No substitution similar to and non-commutative with A can be free from all the letters of any one cycle of A. An exception may occur when q = p and the group contains a transitive subgroup of order p^2 .

Let B be a substitution similar to A, non-commutative with A, and free from all the letters of r cycles of A. If q < p, no two substitutions similar to A can displace exactly the same letters unless one is a power of the other,† and we may assume this to be true in the groups of class p^2 here considered, since the knowledge that G contains a transitive subgroup of degree p^2 makes its consideration and determination relatively simple.

If B does not connect old and new letters transitively in its cycles, $A^{-1}B^{-1}AB$ is of degree not greater than (q-r)p, and is not the identity. We can now assume that B and all its powers connect old and new letters transitively.

It will be shown that a substitution F can always be found among the substitutions similar to A, which transforms into themselves the r cycles of A left fixed by B and which displaces not more than q-r letters new to A. The existence of F depends only upon the existence of B and leads to a substitution, not the identity, which displaces at most (q-r)p+q-r letters. If B displaces not more than q new letters and $q \neq p$, we have at once a substitution $A^{-1}B^{-1}AB$ of degree less than pq. If q=p, an apparent exception arises when r=1, and B displaces just p new letters. But here $A^{-1}BA$ is not a power of B and displaces the same p^2 letters as B.

It is now assumed that B displaces more than q new letters, so that some cycle contains at least two new letters. In $B^{-\rho}AB^{\rho}=C$, suppose ρ so chosen that two new letters which occur in the same cycle of B are adjacent in B^{ρ} .

^{*} Presented to the Society (San Francisco) April 25, 1903. Received for publication June 2, 1904.

[†]Transactions of the American Mathematical Society, vol. 4 (1903), p. 351.

The substitution C does not displace as many new letters as B and in it r cycles of A occur unchanged. C certainly contains one or more new letters. We now wish to show that the new letters which are in C cannot merely fill up isolated cycles of C, but that C also must connect old and new letters in its cycles. Let $C = C_1 SR$, where C_1 contains only old letters, S only new ones, and R is made up of the r unchanged cycles of A. Let S have s cycles. up into two parts, $A = A_1 R$, where $A_1 = c_1 c_2 \cdots c_{q-r}$. The substitution $A^{-1}C = (A_1^{-1}C_1)S$ contains not more than (q-r+s)p letters. $s \ge r$, G is of class less than pq. Again $A^{-1}C^{-1}AC = A_1^{-1}C_1^{-1}A_1C_1$ lowers the class of G to (q-r)p or less unless we have $A_1^{-1}C_1A_1=C_1$. This condition can be satisfied only if $C_1 = c_1^{r_1} c_2^{r_2} \cdots c_{q-r-s}^{r_{q-r-s}}$, since C_1 has at most p-2From this form of C it follows that if a letter of any cycle of A is left fixed by B^{ρ} , no letter of that cycle occurs in B. But by hypothesis B is free from just r complete cycles of A. Then B^{ρ} contains just (q-r)p old letters. The number of new letters in B^{ρ} is sp = rp, and since these rp new letters are all found in C, each one of them is in B^{ρ} preceded by an old letter. was chosen so that two new letters would be adjacent in B^{ρ} . We conclude that C connects old and new letters transitively.

Suppose that in some cycle of C two or more new letters are found. Again we choose ρ so that two new letters are adjacent in C^{ρ} . Then $D = C^{-\rho}A C^{\rho}$ displaces fewer new letters than does C, retains unchanged the r cycles of A left fixed by B, and furthermore connects old and new letters. The last statement requires proof.

In case D does not connect old and new letters, $D = D_1 SR$, where D_1 contains old letters only; S, sp new letters only; and R repeats r cycles of Awithout change. The degree of $A^{-1}D = (A_1^{-1}D_1)S$ is not greater than (q-r+s)p; hence $s \ge r$. Again $A^{-1}D^{-1}AD = A_1^{-1}D_1^{-1}A_1D_1 = 1$, since this substitution cannot displace more than (q-r)p letters. Hence $D_1 = c_1^{x_1} \cdots c_{q-r-s}^{x_{q-r-s}}$. Now $C^{-\rho}A$ $C^{\rho}=D=c_1^{r_1}\cdots c_{q-r-s}^{r_{q-r-s}}SR$. It follows that if a letter of any cycle of A is missing from C^{ρ} , no letter of that cycle occurs in C. Therefore C leaves fixed all the letters of at least s cycles of A. But we have seen that The same reasoning can now be applied to C as was applied to B. Then D has the properties stated. Applying the same method to D we obtain another substitution E similar to A, connecting old and new letters transitively, containing unchanged at least r cycles of A, and displacing fewer new letters than D. This process can be continued until a substitution F is reached which has at least r cycles of A unchanged, is similar to A, and introduces k $(q-r \ge k \ge 1)$ new letters with no two new letters in the same cycle. substitution $A^{-1}F$ displaces not more than (q-r)p+q-r letters, which is contrary to the hypothesis that $r \geq 1$.

THEOREM II. Among the substitutions similar to A in a primitive group of class pq $(1 < q \le p)$, p odd, a substitution B can be found connecting transitively two cycles of A and having not more than one new letter in any cycle.

Since G is primitive the similar substitutions A, \cdots generate a transitive group. If no one of the set replaces all the letters a_1 , a_2 , \cdots , a_p by other letters, one of them connects two cycles of A and has not more than one new letter a in any cycle.* But if A_1 replaces all the letters a_1 , \cdots by other letters, these p letters a are found in at least three of the q cycles of A_1 , so that by the theorem just proved some cycle of A_1 contains letters from different cycles of A. Therefore there always is in the set A, \cdots a substitution $B = (a_1 b_1 \cdots) \cdots$.

Among all the substitutions A, \dots which connect cycles of A, there is one which displaces a minimum number λ of the new letters α . It is immaterial which two cycles of A are connected. Let B be a substitution of the form $(ab\cdots)\cdots$ displacing λ new letters. Also let B leave fixed one of the letters a. It cannot have two new letters α consecutive, for then $B^{-1}AB$ would connect letters a and b in one of its cycles and would displace fewer than λ new Suppose that B has two or more new letters in its first cycle. venient power B^{ρ} makes these two new letters consecutive. In B^{ρ} letters a can only be followed (or preceded) by other letters a and new letters a. the first cycle of B^{ρ} there are the sequences a' a' and b' a'', where a' is one of the letters a_1, \dots, a_n , and b' is one of the remaining (q-1)p letters of A. choose σ so that $B^{\rho\sigma} = (a'b' \cdots a'a'' \cdots) \cdots$. Since by hypothesis B leaves an a fixed, $B^{-\rho\sigma}AB^{\rho\sigma}$ connects cycles of A and has fewer than λ letters α . Then B has just one α in its first cycle. It is clear that any power of B has a letter a followed (or preceded) in its first cycle by a letter from another cycle Hence B cannot have two new letters in any cycle.

^{*}JORDAN, Journal für Mathematik, vol. 79 (1874), pp. 249-253.

a letter c is in a cycle with a and b. Here B displaces the 3p letters $a_1, \dots, b_1, \dots, c_1, \dots$. These 3p letters cannot occupy just 3 cycles of B, for then any power of B would transform A into a new substitution connecting cycles of A. In fact B cannot have kp letters of k cycles of A in k cycles by themselves for the same reason. Hence $a_1, \dots, b_1, \dots, c_1, \dots$ are to be found in at least 4 cycles of B. Continuing thus it is evident that B either displaces all the qp letters of A or connects two cycles of A without displacing all the letters of one of the two cycles.

Class 9.

Let there be a transitive subgroup (F) of degree 9 in G. This subgroup cannot be cyclic for it would then be contained in a doubly transitive G^{10} ,* which does not exist. If F is non-cyclic it leads to a doubly transitive $G^{13}_{13.12.9}$, also impossible.

We can now say that there is a substitution B similar to A which connects transitively two cycles of A and displaces one, two, or three new letters.

Suppose that $I_1 = \{A, B\}$ is intransitive. It is a simple isomorphism between two transitive constituents, one of which is of degree 4 and order 12. Now the other constituent can only be of degree 6, and class 4, lowering the class of G to 8.

Then I_1 is transitive. It is of degree 12 and order 36. The 4 systems of imprimitivity of three letters each can be chosen in only one way. Hence I_1 must be maximal in a doubly transitive $G_{13.12.3}^{13}$, an absurdity. No primitive group of class 9 exists.

Class
$$3p, p > 3$$
.

If a primitive group contains a cyclic subgroup F on 3p letters, it also contains a doubly transitive $G_{(3p+1)3p}^{3p+1}$. Then $3p=2^{2m}-1$, and p=5. We have here a $G_{16.15}^{16}$ † which is maximal in turn in a G^{17} , but is not contained in a 4-ply transitive group of degree 18.‡

In case F is non-Abelian only the doubly transitive G^{3p+4} need be examined. Here the subgroup transforming F into itself has a tetrahedral subgroup in its quotient group. But such a subgroup is not to be found in the group of isomorphisms of F.

Let $I_1 = \{A, B\}$, of degree greater than 3p, be intransitive, and let I'_1 and I''_1 be the two simply isomorphic transitive constituents of degrees 2p + k',

^{*} JORDAN, Journal de Mathématiques, ser. 2, vol. 16 (1871), p. 383; MARGGRAFF, Ueber primitive Gruppen mit transitiven Untergruppen geringeren Grades, Dissertation, Giessen, 1889.

[†] MILLER, The primitive groups of degree 16, American Journal of Mathematics, vol. 20 (1898), p. 229; The transitive groups of degree 17, Quarterly Journal of Mathematics, vol. 31 (1899), p. 49.

[†] JORDAN, Journal de Mathématiques, ser. 2, vol. 17 (1872), p. 351.

p+k'', respectively; where k', k''=0, 1; $k'=k''\neq 0$. Suppose I''_1 of degree p. It is then of class p-2, and hence* is the simple triply transitive $G_{p,p-1,p-2}$. To all the substitutions not of order p in I''_1 must correspond substitutions of degree 2p+2 in I'_1 . Hence (p-1)(p-2)=2p+2, from which p=5. The group I_1 is icosaedral of degree 17. Next suppose that I''_1 is of degree p+1. It can only be of class p-1 and hence is of order $(p+1)p\cdot 2$. Now I''_1 has (p+1)p/2 subgroups of order 2 on p-1 letters, and each is invariant in a subgroup of order 4. But the substitutions of order 2 involve all possible transpositions of p+1 letters, so that a given transposition is found in (p-1)/2 distinct substitutions. These (p-1)/2 substitutions generate an Abelian group since the product of any two of them is of order 2. Hence (p-1)/2=2, p=5.

Since the degree of I'_1 exceeds (3p-1)/2 a substitution C similar to A can be found in G which connects I'_1 and I''_1 , and introduces at most three letters new to I_1 .

We take up I_{60}^{17} first. A transitive group of degree 17 and class 15 is triply transitive and has already been considered. It may be remarked that I_{60}^{17} cannot be included in a larger intransitive group of the same degree. $I_2 = \{A, B, C\}$, if of degree 18, is of order 18.60. This group cannot be primitive, as may be shown as follows. There are in I_2 36 conjugate subgroups of order 5, each of which is invariant in a subgroup of order 30. By considering the transitive representation of I_2 on 36 letters it is seen that I_2 has one conjugate set of 6 subgroups of order 3, and since no operator of order 5 can be permutable with each of the 6 subgroups of order 3, I_2 is isomorphic to a multiply transitive group on 6 letters. Then I_2 has either an invariant intransitive subgroup or a regular invariant subgroup of order 18 containing negative substitutions. But I_2 is a positive primitive group by hypothesis. Since I_2 is generated by I_1^{17} and C, it cannot be imprimitive. Continuing in much the same way the examination of the limited number of cases to which I_{60}^{17} and I_{60}^{18} lead, we reach the conclusion that the subgroup I_i of G is never intransitive.

If the transitive group I_1 is of degree 3p+1 it is primitive of order (3p+1)p. Here again p=5, because of the condition $3p+1=2^a$. This well-known G_{80}^{16} is not maximal in a group of degree 17. If I_1 is of degree 3p+2, the number of subgroups of order p in it is (3p+2)/2, an absurdity. Let $I_1 = \{A, B\}$ be of degree 3p+3. Since any substitution of I_1 which replaces one new letter by another must merely permute the new letters among themselves, I_1 is imprimitive. There are p+1 systems of 3 letters each. Since a system of three letters can be chosen in only one way, I_1 leads to a

^{*} Cf. Maillet, Recherches sur les Substitutions, etc., Dissertation, Paris, 1892, p. 78.

[†] Cf. DE SÉGUIER, Comptes Rendus de l'Académie des Sciences de Paris, vol. 137 (1903), p. 37.

doubly transitive G^{3p+4} of order (3p+4)(3p+3)p or (3p+4)(3p+3)2p. In G the Sylow subgroup of order p is invariant in a group in which the quotient-group is tetrahedral or octahedral. This is impossible.

There exist then only three primitive groups of class 3p, p odd, containing a substitution of order p and class 3p. These groups are of class 15 and order 80, 240 and 4080.